Volterra integral equations on variable exponent Lebesgue spaces
نویسندگان
چکیده
منابع مشابه
Riesz and Wolff potentials and elliptic equations in variable exponent weak Lebesgue spaces ∗
We prove optimal integrability results for solutions of the p(·)-Laplace equation in the scale of (weak) Lebesgue spaces. To obtain this, we show that variable exponent Riesz and Wolff potentials map L to variable exponent weak Lebesgue spaces.
متن کاملOn Variable Exponent Amalgam Spaces
We derive some of the basic properties of weighted variable exponent Lebesgue spaces L p(.) w (R) and investigate embeddings of these spaces under some conditions. Also a new family of Wiener amalgam spaces W (L p(.) w , L q υ) is defined, where the local component is a weighted variable exponent Lebesgue space L p(.) w (R) and the global component is a weighted Lebesgue space Lυ (R) . We inves...
متن کاملOn Non-absolute Functional Volterra Integral Equations and Impulsive Differential Equations in Ordered Banach Spaces
In this article we derive existence and comparison results for discontinuous non-absolute functional integral equations of Volterra type in an ordered Banach space which has a regular order cone. The obtained results are then applied to first-order impulsive differential equations.
متن کاملDiscretization of Volterra Integral Equations
We show that various (discrete) methods for the approximate solution of Volterra (and Abel) integral equations of the first kind correspond to some discrete version of the method of (recursive) collocation in the space of (continuous) piecewise polynomials. In a collocation method no distinction has to be made between equations with regular or weakly singular kernels; the regularity or nonregul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Integral Equations and Applications
سال: 2016
ISSN: 0897-3962
DOI: 10.1216/jie-2016-28-1-1